Какие математические схемы используются при описании систем. Моделирование. Математические схемы моделирования. Основные подходы к построению математической модели системы. Дискретно детерминированные системы (F-схемы). Основные понятия моделирования сист

Наибольшие затруднения и наиболее серьезные ошибки при моделировании возникают при переходе от содержательного к формальному описанию объектов исследования, что объясняется участием в этом творческом процессе коллективов разных специальностей: специалистов в области систем, которые требуется моделировать (заказчиков), и специалистов в области машинного моделирования (исполнителей). Эффективным средством для нахождения взаимопонимания между этими группами специалистов является язык математических схем, позволяющий во главу угла поставить вопрос об адекватности перехода от содержательного описания системы к ее математической схеме, а лишь затем решать вопрос о конкретном методе получения результатов с использованием ЭВМ: аналитическом или имитационном, а возможно, и комбинированном, т. е. аналитико-имитационном. Применительно к конкретному объекту моделирования, т. е. к сложной системе, разработчику модели должны помочь конкретные, уже прошедшие апробацию для данного класса систем математические схемы, показавшие свою эффективность в прикладных исследованиях на ЭВМ и получившие название типовых математических схем.

ОСНОВНЫЕ ПОДХОДЫ К ПОСТРОЕНИЮ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ СИСТЕМ

Исходной информацией при построении математических моделей процессов функционирования систем служат данные о назначении и условиях работы, исследуемой (проектируемой) системы 5. Эта информация определяет основную цель моделирования системы £ и позволяет сформулировать требования к разрабатываемой математической модели А/. Причем уровень абстрагирования зависит от круга тех вопросов, на которые исследователь системы хочет получить ответ с помощью модели, и в какой-то степени определяет выбор математической схемы .

Математические схемы.

Введение понятия "математическая схема" позволяет рассматривать математику не как метод расчета, а как метод мышления, как средство формулирования понятий, что является наиболее важным при переходе от словесного описания системы к формальному представлению процесса ее функционирования в виде некоторой математической модели (аналитической или имитационной). При пользовании математической схемой исследователя системы 5* в первую очередь должен интересовать вопрос об адекватности отображения в виде конкретных схем реальных процессов в исследуемой системе, а не возможность получения ответа (результата решения) на конкретный вопрос исследования. Например, представление процесса функционирования информационно-вычислительной системы коллективного пользования в виде сети схем массового обслуживания дает возможность хорошо описать процессы, происходящие в системе, но при сложных законах распределения входящих потоков и потоков обслуживания не дает возможности получения результатов в явном виде .

Математическую схему можно определить, как звено при переходе от содержательного к формальному описанию процесса функционирования системы с учетом воздействия внешней среды, т. е. имеет место цепочка "описательная модель - математическая схема - математическая [аналитическая или (и) имитационная] модель".

Каждая конкретная система Л 1 характеризуется набором свойств, под которыми понимаются величины, отражающие поведение моделируемого объекта (реальной системы) и учитывающие условия ее функционирования во взаимодействии с внешней средой (системой) Е. При построении математической модели системы необходимо решить вопрос об ее полноте. Полнота модели регулируется в основном выбором границы "система.У-среда £>>. Также должна быть решена задача упрощения модели, которая помогает выделить основные свойства системы, отбросив второстепенные. Причем отнесение свойств системы к основным или второстепенным существенно зависит от цели моделирования системы (например, анализ вероятностно-временных характеристик процесса функционирования системы, синтез структуры системы и т. д.).

Формальная модель объекта. Модель объекта моделирования, т. е. системы 5, можно представить в виде множества величин, описывающих процесс функционирования реальной системы и образующих в общем случае следующие подмножества: совокупность входных воздействий на систему

совокупность воздействий внешней среды

совокупность внутренних (собственных) параметров системы

совокупность выходных характеристик системы

При этом в перечисленных подмножествах можно выделить управляемые и неуправляемые переменные. В общем случае х„ г/, А*,

у у являются элементами непересекающихся подмножеств и содержат как детерминированные, так и стохастические составляющие.

При моделировании системы 5 входные воздействия, воздействия внешней среды Е и внутренние параметры системы являются независимыми (экзогенными) переменными , которые в векторной форме имеют соответственно вид х (/)=(*! (О, х 2 (0> -" х *х(0)*

" (0=("1 (0. "2(0. . "^(0; л (/)=(*! (0. Л 2 (0. ■ . Л -Н (0). а выходные характеристики системы являются зависимыми (эндогенными) переменными и в векторной форме имеют вид у (0=(у 1 0), у 2 (0" > У.гШ

Процесс функционирования системы 5 описывается во времени оператором /* 5 , который в общем случае преобразует экзогенные переменные в эндогенные в соответствии с соотношениями вида

Совокупность зависимостей выходных характеристик системы от времени уДг) для всех видов у= 1, п у называется выходной траекторией у ((). Зависимость (2.1) называется законом функционирования системы Б и обозначается Г 5 . В общем случае закон функционирования системы Е 5 может быт задан в виде функции, функционала, логических условий, в алгоритмической и табличной формах или в виде словесного правила соответствия.

Весьма важным для описания и исследования системы 5 является понятие алгоритма функционирования Л 5 , под которым понимается метод получения выходных характеристик с учетом входных воздействий х (/), воздействий внешней среды V (г) и собственных параметров системы И (/). Очевидно, что один и тот же закон функционирования системы 5 может быть реализован различными способами, т. е. с помощью множества различных алгоритмов функционирования Л $ .

Соотношения (2.1) являются математическим описанием поведения объекта (системы) моделирования во времени /, т. е. отражают его динамические свойства. Поэтому математические модели такого вида принято называть динамическими моделями (системами) .

Для статических моделей математическая модель (2.1) представляет собой отображение между двумя подмножествами свойств моделируемого объекта У и {X, V , Я}, что в векторной форме может быть записано как

Соотношения (2.1) и (2.2) могут быть заданы различными способами: аналитически (с помощью формул), графически, таблично и т. д. Такие соотношения в ряде случаев могут быть получены

через свойства системы 5 в конкретные моменты времени, называемые состояниями. Состояние системы 5 характеризуется векторами

где *; = *!(/"), *2=*2(0" " **=**(0 в момент /"е(/ 0 , 7); *1 =^(0, *2=*2(П" , *£=**(*") в момент /"б(/ 0 , 7) и т. д., £=1, п г.

Если рассматривать процесс функционирования системы 5 как последовательную смену состояний (/), г 2 (/), г к (/), то они

могут быть интерпретированы как координаты точки в ^-мерном фазовом пространстве, причем каждой реализации процесса будет соответствовать некоторая фазовая траектория. Совокупность всех возможных значений состояний {г} называется пространством состояний объекта моделирования Z t причем г к е Z.

Состояния системы 5 в момент времени полностью

определяются начальными условиями 7° = (2° 1 ,. 2 2 °, г ° к) [где

*°1 = *1(*о)" *°г = *2 (^о)" -" *°*=**(*о)]" входными воздействиями х (/), внутренними параметрами к (/) и воздействиями внешней среды V (0, которые имели место за промежуток времени - / 0 , с помощью двух векторных уравнений

Первое уравнение по начальному состоянию г° и экзогенным переменным х, V, И определяет вектор-функцию (/), а второе по полученному значению состояний г (/) - эндогенные переменные на выходе системы у (/). Таким образом, цепочка уравнений объекта "вход - состояния - выход" позволяет определить характеристики системы

В общем случае время в модели системы Я может рассматриваться на интервале моделирования (О, Т) как непрерывное, так и дискретное, т. е. квантованное на отрезки д линой А/ временных единиц каждый, когда Т=тА1, где т- 1, т Т - число интервалов дискретизации.

Таким образом, под математической моделью объекта (реальной системы) понимают конечное подмножество переменных (/), ь (/), И (г)} вместе с математическими связями между ними и характеристиками у (/) .

Если математическое описание объекта моделирования не содержит элементов случайности или они не учитываются, т. е. если

можно считать, что в этом случае стохастические воздействия внешней среды V (/) и стохастические внутренние параметры И (/) отсутствуют, то модель называется детерминированной в том смысле, что характеристики однозначно определяются детерминированными входными воздействиями

Очевидно, что детерминированная модель является частным случаем стохастической модели.

Типовые схемы.

Приведенные математические соотношения представляют собой математические схемы общего вида и позволяют описать широкий класс систем. Однако в практике моделирования объектов в области системотехники и системного анализа на первоначальных этапах исследования системы рациональнее использовать типовые математические схемы: дифференциальные уравнения, конечные и вероятностные автоматы, системы массового обслуживания, сети Петри и т. д.

Не обладая такой степенью общности, как рассмотренные модели, типовые математические схемы имеют преимущества простоты и наглядности, но при существенном сужении возможностей применения. В качестве детерминированных моделей, когда при исследовании случайные факторы не учитываются, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные, интегро-дифференциальные и другие уравнения, а для представления систем, функционирующих в дискретном времени- конечные автоматы и конечно-разностные схемы. В качестве стохастических моделей (при учете случайных факторов) для представления систем с дискретным временем используются вероятностные автоматы, а для представления системы с непрерывным временем - системы массового обслуживания и т. д.

Перечисленные типовые математические схемы, естественно, не могут претендовать на возможность описания на их базе всех процессов, происходящих в больших информационно-управляющих системах. Для таких систем в ряде случаев более перспективным является применение агрегативных моделей . Агрегативные модели (системы) позволяют описать широкий круг объектов исследования с отображением системного характера этих объектов. Именно при агрегативном описании сложный объект (система) расчленяется на конечное число частей (подсистем), сохраняя при этом связи, обеспечивающие взаимодействие частей.

Таким образом, при построении математических моделей процессов функционирования систем можно выделить следующие основные подходы: непрерывно-детерминированный (например, дифференциальные уравнения); дискретно-детерминированный (конечные автоматы); дискретно-стохастический (вероятностные автоматы); непрерывно-стохастический (системы массового обслуживания); обобщенный, или универсальный (агрегативные системы).

Математические схемы, рассматриваемые в последующих параграфах данной главы, должны помочь оперировать различными подходами в практической работе при моделировании конкретных систем.

Модель сложной системы, рассмотренная ранее, представляет собой математическую схему моделирования общего вида. На практике для формализации концептуальных моделей ряда систем выгоднее применять типовые математические схемы моделирования, учитывающие с одной стороны способ представления времени в модели (непрерывная переменная или дискретная), а с другой стороны степень случайности моделируемых процессов. По этим признакам различают следующие математические схемы моделирования (классы ММ).

Непрерывно – детерминированные модели (D – схемы).

Дискретно – детерминированные модели (F – схемы).

Дискретно – вероятностные модели (P – схемы).

Непрерывно - вероятностные модели (Q – схемы).

Сетевые модели (N – схемы).

Агрегатные модели (А – схемы).

Непрерывно-детерминированные модели . В этих моделях время t полагается непрерывной переменной, а случайными факторами в системе пренебрегают. Математический аппарат моделей – теория дифференциальных и интегральных уравнений, с помощью которой достигается адекватное описание динамических систем. Наиболее глубоко разработан операторный метод описания и исследования процессов функционирования динамических систем и их структур.

Примером непрерывно – детерминированной модели одноканальной системы автоматического управления является неоднородное дифференциальное уравнение с постоянными коэффициентами.

В этом уравнении x(t)- входное воздействие; y(t) – выходная величина, характеризующая положение объекта управления; - внутренние параметры системы.

Если динамическая система описывается нелинейным дифференциальным уравнением, то его линеаризуют и решают как линейное.

Применение непрерывно – детерминированных моделей позволяет количественно осуществлять не только анализ динамических систем, но и оптимальный синтез их.

Дискретно-детерминированные модели . В дискретно–детерминированных (ДД) моделях время t является дискретной переменной , где – шаг дискретизации, а – дискретные моменты времени.

Основной математический аппарат, используемый при построении ДД – моделей – это теория разностных уравнений и аппарат дискретной математики, в частности, теория конечных автоматов.

Разностное уравнение – это уравнение, содержащее конечные разности искомой функции

где – соответственно состояние системы и внешнее воздействие в дискретные моменты времени .

В прикладных задачах ДД – модели в виде (2.6) часто возникают как промежуточные при исследовании НД – моделей на ЭВМ, когда аналитическое решение дифференциального уравнения получить не удается и приходится применять разностные схемы.

Кратко рассмотрим теорию конечных автоматов, которая используется для построения ДД – моделей.

Конечный автомат – это математическая модель дискретной системы, которая под действием входных сигналов вырабатывает выходные сигналы , и которая может иметь некоторые изменяемые внутренние состояния ; здесь – конечные множества.

Конечный автомат характеризуется: входным алфавитом ; выходным алфавитом ; внутренним алфавитом состояний ; начальным состоянием ; функцией переходов ; функцией выходов .

Процесс функционирования конечного автомата таков. В –м такте на вход автомата, находящегося в состоянии , поступает входной сигнал , на который автомат реагирует переходом на –м такте в состояние и выдачей выходного сигнала Например, конечный автомат Мили описывается следующими рекуррентными соотношениями:

Дискретно–вероятностные модели . В дискретно–вероятностной модели учитываются случайные элементы исследуемой сложной системы. Основной математический аппарат, используемый при построении и исследовании ДВ – моделей, – это теория разностных стохастических уравнений и теория вероятностных автоматов.

Разностное стохастическое уравнение – это такое уравнение, которое содержит случайные параметры или случайные входные воздействия .

Пусть на вероятностном пространстве определен случайный – вектор параметров и случайная последовательность входных воздействий

Нелинейное разностное стохастическое уравнение порядка имеет вид , (2.8)

где заданные начальные состояния системы; заданная функция переменных.

Решением этого уравнения является определенная на множестве случайная последовательность состояний моделируемой системы:

Если функция линейная по , то (2.8) примет вид:

(2.9)

где вектор параметров.

Другой математический аппарат построения ДВ – моделей сложных систем представляет теория вероятностных автоматов.

Вероятностный автомат, определенный на множестве , есть конечный автомат, в котором функция переходов и функция выходов являются случайными функциями, имеющими некоторые вероятностные распределения.

Примем обозначения для вероятностных распределений – начальное распределение вероятностей, – вероятность события, состоящего в том, что находящийся в –м такте в состоянии автомат под воздействием входного сигнала выдаст выходной сигнал и перейдет на –м такте в состояние

Математическая модель вероятностного автомата полностью определяется пятью элементами: .

Непрерывно – вероятностные модели . При построении и исследовании НВ – моделей используется теория стохастических дифференциальных уравнений и теория массового обслуживания.

Стохастическое дифференциальное уравнение (в форме Ито) имеет вид:

где – случайный процесс, определяющий состояние системы в момент времени ; – стандартный винеровский случайный процесс; – коэффициенты диффузии и переноса. НВ – модель часто используется при моделировании стохастических систем управления, процессов обмена.

Теория массового обслуживания разрабатывает и исследует математические модели различных по своей природе процессов функционирования систем, например: поставок сырья и комплектующих изделий некоторому предприятию; заданий, поступающих на ЭВМ от удаленных терминалов; вызов на телефонных станциях и т.д. Для функционирования таких систем характерна стохастичность: случайность моментов времени появления заявок на обслуживание и т.д.

Система, описываемая как система массового обслуживания (СМО), состоит из приборов обслуживания . Прибор обслуживания состоит из накопителя заявок , в котором могут одновременно находиться заявок , и канала обслуживания заявок; – емкость накопителя , то есть число мест в очереди на обслуживание заявок в канале .

На каждый элемент прибора поступают потоки событий; в накопитель – поток заявок , на канал – поток «обслуживаний» . Поток заявок представляет последовательность интервалов времени между моментами появления заявок на входе СМО и образует подмножество неуправляемых переменных СМО. А поток представляет собой последовательность интервалов времени между моментами начала и окончания обслуживания заявок и образует подмножество управляемых переменных.

Заявки, обслуженные СМО, образуют выходной поток – последовательность интервалов времени между моментами выхода заявок. Не обслуженные заявки, но покинувшие СМО по различным причинам, образуют выходной поток потерянных заявок.

Сетевые модели используют для формализации причинно – следственных связей в сложных системах с параллельными процессами. В основе этих моделей лежит сеть Петри. При графической интерпретации сеть Петри представляет собой граф особого вида, состоящий из вершин двух типов – позиций и переходов , соединенных ориентированными дугами, причем каждая дуга может связывать лишь разнотипные вершины (позицию с переходом или переход с позицией). Вершины-позиции обозначаются кружками, вершины-переходы – черточками. С содержательной точки зрения переходы соответствуют событиям, присущим исследуемой системе, а позиции – условиям их возникновения.

Таким образом, совокупность переходов, позиций и дуг позволяет описать причинно-следственные связи, присущие системе, но в статике. Чтобы сеть Петри «ожила», вводят еще один вид объектов сети – так называемые фишки или метки позиций, которые перемещаются по переходам сети при условии наличия метки во входной позиции и отсутствии метки в выходной позиции. Расположение фишек в позициях сети называется разметкой сети .

Агрегатные модели . Анализ существующих задач приводит к выводу о том, что комплексное решение проблем возможно лишь в том случае, если моделирующие системы имеют в своей основе единую математическую схему моделирования. Такой подход к формализации процесса функционирования сложной системы предложен Бусленко Н.П. и базируется на понятии «агрегата».

При агрегатном описании сложная система разбивается по подсистемы, сохраняя при этом связи обеспечивающие взаимодействие их. Если подсистема оказывается сложной, то процесс расчленения продолжается до тех пор, пока не образуются подсистемы, которые в условиях рассматриваемой задачи могут считаться удобными для математического описания.

В результате этого получается многоуровневая конструкция из взаимосвязанных элементов объединенных в подсистемы различных уровней. Элементами агрегатной модели являются агрегаты. Связи между агрегатами и внешней средой осуществляются с помощью операторов сопряжения. Сам агрегат тоже может рассматриваться как агрегатная модель, то есть разбиваться на элементы следующего уровня.

Любой агрегат характеризуется множествами: моментов времени T , входных X и выходных Y сигналов, состояний агрегата Z в каждый момент времени t . Процесс функционирования агрегата состоит из скачков состояний в моменты поступлений входных сигналов x и изменений состояний между этими моментами и .

Моменты скачков , не являющиеся моментами поступления входных сигналов называют особыми моментами времени , а состояния особыми состояниями агрегатной схемы. В множестве состояний Z выделяют подмножество , что если достигает , то это состояние является моментом выдачи выходного сигнала y .

16 Математические схемы моделирования систем.

Основные подходы к построению математических моделей системы. Непрерывно-детерминированные модели. Дискретно-детерминированные модели. Дискретно-стохастические модели. Непрерывно-стохастические модели. Сетевые модели. Комбинированные модели.

Основные подходы к построению математических моделей системы.

Исходной информацией при построении математических моделей процессов функционирования систем служат данные о назначении и условиях работы исследуемой (проектируемой) системы S.

Математические схемы

Отображаются реальные процессы в виде конкретных схем. Мат. схемы – переход от содержательного описания к формальному описанию системы с учетом воздействия окружающей среды.

Формальная модель объекта

Модель объекта моделирования,

т. е. системы S, можно представить в виде множества величин,

описывающих процесс функционирования реальной системы и образующих

в общем случае следующие подмножества:

· совокупность входных воздействий на систему

х i ,еХ,(e -символ принадлежит) i =1; nx

· совокупность воздействий внешней среды

v l e V l=1;nv

· совокупность внутренних (собственных) параметров системы

hkeH k=1;nh

· совокупность выходных характеристик системы

yJeY j=1;ny

Можно выделить управляемые и неуправляемые переменные.

При моделировании систем входные воздействия, воздействия внешней среды и внутренние параметры содержат и детерминированные и стохастические составляющие.

входные воздействия, воздействия внешней среды Е и внутренние параметры системы являются независимыми (экзогенными) переменными.


Процесс функционирования системы S описывается во времени оператором Fs, который в общем случае преобразует экзогенные переменные в эндогенные в соответствии с соотношениями вида:

y (t)=Fs(x ,v, h,t) – все с ве k торами.

Закон функционирования системы Fs может быть задан в виде функции, функционала, логических условий, в алгоритмической и табличной формах или в виде словесного правила соответствия.

Понятие алгоритма функционирования As - метод получения выходных характеристик с учетом входных воздействий, воздействий внешней среды и собственных параметров системы.

Также вводятся состояния системы – свойства системы в конкретные моменты времени.

Совокупность всех возможных значений состояний составляют пространство состояний объекта.

Таким образом, цепочка уравнений объекта «вход - состояния - выход» позволяет определить характеристики системы:

Таким образом, под математической моделью объекта (реальной системы) понимают конечное подмножество переменных {х (t),v (t), h (t)} вместе с математическими связями между ними и характеристиками у (t).

Типовые схемы

На первоначальных этапах исследования используются типовые схемы: дифференциальные уравнения, конечные и вероятностные автоматы, системы массового обслуживания, сети Петри и т. д.

В качестве детерминированных моделей, когда при исследовании случайные факторы не учитываются, для представления систем, функционирующих в непрерывном времени, используются дифференциальные, интегральные, интегродифференциальные и другие уравнения, а для представления систем, функционирующих в дискретном времени,- конечные автоматы и конечно-разностные схемы.

В качестве стохастических моделей (при учете случайных факторов) для представления систем с дискретным временем используются вероятностные автоматы, а для представления системы с непрерывным временем - системы массового обслуживания и т. д.

Таким образом, при построении математических моделей процессов функционирования систем можно выделить следующие основные подходы: непрерывно-детерминированный (например, дифференциальные уравнения); дискретно-детерминированный (конечные автоматы); дискретно-стохастический (вероятностные автоматы); непрерывно-стохастический (системы массового обслуживания); обобщенный, или универсальный (агрегативные системы).

Непрерывно-детерминированные модели

Рассмотрим особенности непрерывно детерминированного подхода на примере, используя в качестве Мат. моделей дифференциальные уравнения .

Дифференциальными уравнениями называются такие уравнения, в которых неизвестными будут функции одной переменной или нескольких переменных, причём в уравнение входят не только их функции но их производные различных порядков.

Если неизвестные - функции многих переменных, то уравнения называются - уравнения в частных производных. Если неизвестные функции одной независимой переменной, то имеют место обыкновенные дифференциальные уравнения.

Математическое соотношение для детерминированных систем в общем виде:

Дискретно-детерминированные модели.

ДДМ являются предметом рассмотрения теории автоматов (ТА) . ТА - раздел теоретической кибернетики, изучающей устройства, перерабатывающие дискретную информацию и меняющего свои внутренние состояния лишь в допустимые моменты времени.


Конечным автоматом называется автомат, у которого множество внутренних состояний и входных сигналов (а следовательно, и множество выходных сигналов) являются конечными множествами.

Конечный автомат имеет множество внутренних состояний и входных сигналов, являющихся конечными множествами. Автомат задаётся F- схемой: F=,

где z, x,y - соответственно конечные множества входных, выходных сигналов (алфавитов) и конечное множество внутренних состояний (алфавита). z0ÎZ - начальное состояние; j(z, x) - функция переходов; y(z, x) - функция выхода.

Автомат функционирует в дискретном автоматном времени, моментами которого являются такты, т. е. примыкающие друг к другу равные интервалы времени, каждому из которых соответствуют постоянные значения входного, выходного сигнала и внутреннего состояния. Абстрактный автомат имеет один входной и один выходной каналы.

Для задания F - автомата необходимо описать все элементы множества F=, т. е. входной, внутренний и выходной алфавиты, а также функции переходов и выходов. Для задания работы F - автоматов наиболее часто используются табличный, графический и матричный способ.

В табличном способе задания используется таблицы переходов и выходов, строки которых соответствуют входным сигналам автомата, а столбцы - его состояниям.

Описание работы F - автомата Мили таблицами переходов j и выходов y иллюстрируется таблицей (1), а описание F - автомата Мура - таблицей переходов (2).

Таблица 1

Переходы

…………………………………………………………

…………………………………………………………

Таблица 2

…………………………………………………………

Примеры табличного способа задания F - автомата Мили F1 с тремя состояниями, двумя входными и двумя выходными сигналами приведены в таблице 3, а для F - автомата Мура F2 - в таблице 4.

Таблица 3

Переходы

Таблица 4

При другом способе задания конечного автомата используется понятие направленного графа. Граф автомата представляет собой набор вершин, соответствующих различным состояниям автомата и соединяющих вершин дуг графа, соответствующих тем или иным переходам автомата. Если входной сигнал xk вызывает переход из состояния zi в состояние zj, то на графе автомата дуга, соединяющая вершину zi с вершиной zj обозначается xk. Для того, чтобы задать функцию переходов, дуги графа необходимо отметить соответствующими выходными сигналами.

Рис. 1. Графы автоматов Мили (а) и Мура (б).

При решении задач моделирования часто более удобной формой является матричное задание конечного автомата. При этом матрица соединений автомата есть квадратная матрица С=|| cij ||, строки которой соответствуют исходным состояниям, а столбцы - состояниям перехода.

Пример. Для рассмотренного ранее автомата Мура F2 запишем матрицу состояний и вектор выходов:

;

Дискретно-стохастические модели

Пусть Ф – множество всевозможных пар вида (zk, yi), где уi – элемент выходного

подмножества Y. Потребуем, чтобы любой элемент множества G индуцировал

на множестве Ф некоторый закон распределения следующего вида:

Элементы из Ф (z1, y2) (z1, y2zk, yJ-1) (zK, yJ)

(xi, zs) b11 b1bK(J-1) bKJ

Информационные сети" href="/text/category/informatcionnie_seti/" rel="bookmark">обработку информации ЭВМ от удаленных терминалов и т. д.

При этом характерным для

работы таких объектов является случайное появление заявок (требований) на

обслуживание и завершение обслуживания в случайные моменты времени,

т. е. стохастический характер процесса их функционирования.

Под СМО понимают динамическую систему, предназначенную для эффективного обслуживания случайного потока заявок при ограниченных ресурсах системы. Обобщённая структура СМО приведена на рисунке 3.1.

Рис. 3.1. Схема СМО.

Поступающие на вход СМО однородные заявки в зависимости от порождающей причины делятся на типы, интенсивность потока заявок типа i (i=1…M) обозначено li. Совокупность заявок всех типов - входящий поток СМО.

Обслуживание заявок выполняется m каналами.

Различают универсальные и специализированные каналы обслуживания. Для универсального канала типа j считается известными функции распределения Fji(t) длительности обслуживания заявок произвольного типа. Для специализированных каналов функции распределения длительности обслуживания каналов заявок некоторых типов являются неопределёнными, назначение этих заявок на данный канал.

Q - схемы можно исследовать аналитически и имитационными моделями. Последнее обеспечивает большую универсальность.

Рассмотрим понятие массового обслуживания.

В любом элементарном акте обслуживания можно выделить две основные составляющие: ожидание обслуживания заявкой и собственно обслуживание заявки. Это можно отобразить в виде некоторого i-ого прибора обслуживания Пi, состоящего из накопителя заявок, в котором может находиться одновременно li=0…LiH заявок, где LiH - ёмкость i-ого накопителя, и канала обслуживания заявок, ki.

Рис. 3.2. Схема прибора СМО

На каждый элемент прибора обслуживания Пi поступают потоки событий: в накопитель Hi поток заявок wi, на канал ki - поток обслуживания ui.

Потоком событий (ПС) называется последовательность событий, происходящих одно за другим в какие-то случайные моменты времени. Различают потоки однородных и неоднородных событий. Однородный ПС характеризуется только моментами поступления этих событий (вызывающими моментами) и задаётся последовательностью {tn}={0£t1£t2…£tn£…}, где tn - момент поступления n - ого события - неотрицательное вещественное число. ОПС может быть также задан в виде последовательности промежутков времени между n-ым и n-1-ым событиями {tn}.

Неоднородным ПС называется последовательность {tn, fn} , где tn - вызывающие моменты; fn- набор признаков события. Например, может быть задана принадлежность к тому или иному источнику заявок, наличие приоритета, возможность обслуживания тем или иным типом канала и т. п.

Заявки, обслуженные каналом ki и заявки, покинувшие прибор Пi по различным причинам не обслуженными, образуют выходной поток yiÎY.

Процесс функционирования прибора обслуживания Пi можно представить как процесс изменения состояний его элементов во времени Zi(t). Переход в новое состояние для Пi означает изменение кол-ва заявок, которые в нём находятся (в канале ki и накопителе Hi). Т. о. вектор состояний для Пi имеет вид: , где - состояния накопителя, (https://pandia.ru/text/78/362/images/image010_20.gif" width="24 height=28" height="28">=1- в накопителе одна заявка…, =- накопитель занят полностью; - состояние канала ki (=0 - канал свободен, =1 канал занят).

Q-схемы реальных объектов образуются композицией многих элементарных приборов обслуживания Пi. Если ki различных приборов обслуживания соединены параллельно, то имеет место многоканальное обслуживание (многоканальная Q-схема), а если приборы Пi и их параллельные композиции соединены последовательно, то имеет место многофазное обслуживание (многофазная Q-схема).

Для задания Q-схемы также необходимо описать алгоритмы её функционирования, которые определяют правила поведения заявок в различных неоднозначных ситуациях.

В зависимости от места возникновения таких ситуаций различают алгоритмы (дисциплины) ожидания заявок в накопителе Нi и обслуживания заявок каналом ki. Неоднородность потока заявок учитывается с помощью введения класса приоритетов – относительные и абсолютные приоритеты.

Т. о. Q‑схема, описывающая процесс функционирования СМО любой сложности однозначно задаётся в виде набора множеств: Q = .

Сетевые модели.

Для формального описания структуры и взаимодействия параллельных систем и процессов, а также анализа причинно-следственных связей в сложных системах используются сети Петри (англ. Petri Nets), называемые N-схемами.

Формально N-схема задается четверкой вида

N = ,

где В – конечное множество символов, называемых позициями, B ≠ O;

D – конечное множество символов, называемых переходами D ≠ O,

B ∩ D ≠ O; I – входная функция (прямая функция инцидентности)

I: B × D → {0, 1}; О – выходная функция (обратная функция инцидентности),

О: B × D → {0, 1}. Таким образом входная функция I отображает переход dj в

множество входных позиций bj I(dj), а выходная функция O отображает

переход dj в множество выходных позиций bj О(dj). Для каждого перехода

dj https://pandia.ru/text/78/362/images/image013_14.gif" width="13" height="13"> B | I(bi, dj) = 1 },

O(dj) = { bi B | O(dj, bi) = 1 },

i = 1,n; j = 1,m; n = | B |, m = | D |.

Аналогично для каждой позиции bi B вводятся определения

множество входных переходов позиции I(bi) и выходных переходов

позиции O(bi):

I(bi) = { dj D | I(dj, bi,) = 1 },

O(bi) = { dj D | O(bi, dj) = 1 }.

Сеть Петри представляет собой двудольный ориентированный граф, состоящий из вершин двух типов - позиций и переходов, соединённых между собой дугами, вершины одного типа не могут быть соединены непосредственно.

Пример сети Петри. Белыми кружками обозначены позиции, полосками - переходы, чёрными кружками - метки.

Ориентировочные дуги соединяют позиции и переходы, причем каждая дуга направлена от элемента одного множества (позиции или перехода) к элементу другого множества

(переходу или позиции). Граф N-схемы является мультиграфом, так как он

допускает существование кратных дуг от одной вершины к другой.

Декомпозиция" href="/text/category/dekompozitciya/" rel="bookmark">декомпозиции сложная система представляется в виде многоуровневой конструкции из взаимосвязанных элементов, объединенных в подсистемы различных уровней.

В качестве элемента А-схемы выступает агрегат, а связь между агрегатами (внутри системы S и с внешней средой Е) осуществляется с помощью оператора сопряжения R.

Любой агрегат характеризуется следующими множествами: моментов времени T, входных X и выходных Y сигналов, состояний Z в каждый момент времени t. Состояние агрегата в момент времени tT обозначается как z(t) Z,

а входные и выходные сигналы как х(t) X и y(t) Y соответственно.

Будем полагать, что переход агрегата из состояния z(t1) в состояние z(t2)≠z(t1) происходит за малый интервал времени, т. е. имеет место скачок δz.

Переходы агрегата из состояния z(t1) в z(t2) определяются собственными (внутренними) параметрами самого агрегата h(t) H и входными сигналами x(t) X.

В начальный момент времени t0 состояния z имеют значения, равные z0, т. е. z0=z(t0), задаваемые законом распределения процесса z(t) в момент времени t0, а именно J. Предположим, что процесс функционирования агрегата в случае воздействия входного сигнала xn описывается случайным оператором V. Тогда в момент поступления в агрегат tnT входного сигнала

xn можно определить состояние

z(tn + 0) = V.

Обозначим полуинтервал времени t1 < t ≤ t2 как (t1, t2], а полуинтервал

t1 ≤ t < t2 как .

Совокупность случайных операторов V и U рассматривается как оператор переходов агрегата в новые состояния. При этом процесс функционирования агрегата состоит из скачков состояний δz в моменты поступления входных сигналов х (оператор V) и изменений состояний между этими моментами tn и tn+1 (оператор U). На оператор U не накладывается никаких ограничений, поэтому допустимы скачки состояний δz в моменты времени, не являющиеся моментами поступления входных сигналов x. В дальнейшем моменты скачков δz будем называть особыми моментами времени tδ, а состояния z(tδ) – особыми состояниями А-схемы. Для описания скачков состояний δz в особые моменты времени tδ будем использовать случайный оператор W, представляющий собой частный случай оператора U, т. е.

z(tδ + 0) = W.

В множестве состояний Z выделяется такое подмножество Z(Y), что если z(tδ) достигает Z(Y), то это состояние является моментом выдачи выходного сигнала, определяемого оператором выходов

у = G.

Таким образом, под агрегатом будем понимать любой объект, определяемый упорядоченной совокупностью рассмотренных множеств T, X, Y, Z, Z(Y), H и случайных операторов V, U, W, G.

Последовательность входных сигналов, расположенных в порядке их поступления в А-схему, будем называть входным сообщением или x-сообщением. Последовательность выходных сигналов, упорядоченную относительно времени выдачи, назовем выходным сообщением или y-сообщением.

ЕСЛИ КРАТКО

Непрерывно-детерминированные модели (Д-схемы)

Применяются для исследования систем, функционирующих в непрерывном времени. Для описания таких систем в основном используются дифференциальные, интегральные, интегро-дифференциальные уравнения. В обыкновенных дифференциальных уравнениях рассматривается функция только одной независимой переменной, а в уравнениях в частных производных - функции нескольких переменных.

В качестве примера применения Д-моделей можно привести исследование работы механического маятника или электрического колебательного контура. Техническую основу Д-моделей составляют аналоговые вычислительные машины (АВМ) или бурно развивающиеся в настоящее время гибридные вычислительные машины (ГВМ). Как известно, основной принцип исследований на ЭВМ состоит в том, что по заданным уравнениям исследователь (пользователь АВМ) собирает схему из отдельных типовых узлов - операционных усилителей с включением цепей масштабирования, демпфирования, аппроксимации и т. п.

Структура АВМ изменяется в соответствии с видом воспроизводимых уравнений.

В цифровой ЭВМ структура остается неизменной, а изменяется последовательность работы ее узлов в соответствии с заложенной в нее программой. Сравнение АВМ и ЦВМ наглядно показывает разницу между имитационным и статистическим моделированием.

АВМ реализует имитационную модель, но, как правило, не использует принципы статистического моделировании. В ЦВМ большинство имитационных моделей базируется на исследовании случайных чисел, процессов, т. е. на статистическом моделировании. Непрерывно-детерминированные модели широко используются в машиностроении при исследовании систем автоматического управления, выборе амортизирующих систем, выявлении резонансных явлений и колебаний в технике
и т. п.

Дискретно-детерминированные модели (F-схемы)

Оперируют с дискретным временем. Эти модели являются основой для исследования работы чрезвычайно важного и распространенного сегодня класса систем дискретных автоматов. С целью их исследования разработан самостоятельный математический аппарат теории автоматов. На основе этой теории система рассматривается как автомат, перерабатывающий дискретную информацию и меняющий, в зависимости от результатов ее переработки, свои внутренние состояния.

На этой модели основаны принципы минимизации числа элементов и узлов в схеме, устройстве, оптимизация устройства в целом и последовательности работы его узлов. Наряду с электронными схемами , ярким представителем автоматов, описываемых данной моделью, является робот, управляющий (по заданной программе) технологическими процессами в заданной детерминированной последовательности.

Станок с числовым программным управлением также описывается данной моделью. Выбор последовательности обработки деталей на этом станке осуществляется настройкой узла управления (контроллера), вырабатывающего сигналы управления в определенные моменты времени / 4 /.

Теория автоматов использует математический аппарат булевых функций, оперирующих с двумя возможными значениями сигналов 0 и 1.

Автоматы разделяются на автоматы без памяти, автоматы с памятью. Описание их работы производится с помощью таблиц, матриц, графов, отображающих переходы автомата из одного состояния в другое. Аналитические оценки при любом виде описания работы автомата весьма громоздки и уже при сравнительно небольшом числе элементов, узлов, образующих устройство, практически невыполнимы. Поэтому исследование сложных схем автоматов, к которым, несомненно, относятся и робототехнические устройства, производится с применением имитационного моделирования.

Дискретно-стохастические модели (P-схемы)

Применяются при исследовании работы вероятностных автоматов. В автоматах этого типа переходы из одного состояния в другое осуществляются под воздействием внешних сигналов и с учетом внутреннего состояния автомата. Однако в отличие от Г-автоматов, эти перехода не строго детерминированы, а могут осуществляться с определенными вероятностями.

Пример такой модели представляет дискретная марковская цепь с конечным множеством состояний. Анализ F-схем основан на обработке и преобразовании матриц вероятностей переходов и анализе вероятностных графов. Уже для анализа сравнительно простых устройств, поведение которых описывается F-схемами, целесообразно применение имитационного моделирования. Пример такого моделирования приведен в пункте 2.4.

Непрерывно-стохастические модели (Q-схемы)

Используются при анализе широкого класса систем, рассматриваемых как системы массового обслуживания. В качестве процесса обслуживания могут быть представлены различные по своей физической природе процессы: потоки поставок продукции предприятию, потоки комплектующих заказных деталей и изделий, потоки деталей на сборочном конвейере, потоки управляющих воздействий от центра управления АСУ на рабочие места и обратные заявки на обработку информации в ЭВМ и т. д.

Как правило, эти потоки зависят от многих факторов и конкретных ситуаций. Поэтому в большинстве случаев эти потоки случайны во времени с возможностью изменений в любые моменты. Анализ таких схем производится на основе математического аппарата теории массового обслуживания. К ним относится непрерывная марковская цепь. Несмотря на значительные успехи, достигнутые в разработке аналитических методов, теория массового обслуживания, анализ Q-схем аналитическими методами может быть проведен лишь при значительных упрощающих допущениях и предположениях. Детальное исследование большинства этих схем, тем более таких сложных, как АСУТП, робототехнические системы, может быть проведено только с помощью имитационного моделирования.

Обобщенные модели (А-схемы)

Основаны на описании процессов функционирования любых систем на базе агрегативного метода. При агрегативном описании система разбивается на отдельные подсистемы, которые могут считаться удобными для математического описания. В результате такого разбиения (декомпозиции) сложная система представляется в виде многоуровневой системы, отдельные уровни (агрегаты) которой поддаются анализу. На основе анализа отдельных агрегатов и с учетом законов взаимосвязей этих агрегатов удается провести комплексное исследование всей системы.

, Яковлев систем. 4-е изд. – М.: Высшая школа, 2005. – С. 45-82.

В предложенной вашему вниманию статье мы предлагаем примеры математических моделей. Кроме этого, мы обратим внимание на этапы создания моделей и разберем некоторые задачи, связанные с математическим моделированием.

Еще один наш вопрос - это математические модели в экономике, примеры, определение которых мы рассмотрим немного позже. Начать наш разговор мы предлагаем с самого понятия «модель», кратко рассмотрим их классификацию и перейдем к основным нашим вопросам.

Понятие «модель»

Мы часто слышим слово «модель». Что же это такое? Данный термин имеет множество определений, вот только три из них:

  • специфический объект, который создается для получения и хранения информации, отражающий некоторые свойства или характеристики и так далее оригинала данного объекта (этот специфический объект может выражаться в разной форме: мысленный, описание при помощи знаков и так далее);
  • еще под моделью подразумевается отображение какой-либо конкретной ситуации, жизненной или управленческой;
  • моделью может служить уменьшенная копия какого-либо объекта (они создаются для более подробного изучения и анализа, так как модель отражает структуру и взаимосвязи).

Исходя из всего, что было сказано ранее, можно сделать небольшой вывод: модель позволяет подробно изучить сложную систему или объект.

Все модели можно классифицировать по ряду признаков:

  • по области использования (учебные, опытные, научно-технические, игровые, имитационные);
  • по динамике (статические и динамические);
  • по отрасли знаний (физические, химические, географические, исторические, социологические, экономические, математические);
  • по способу представления (материальные и информационные).

Информационные модели, в свою очередь, делятся на знаковые и вербальные. А знаковые - на компьютерные и некомпьютерные. Теперь перейдем к подробному рассмотрению примеров математической модели.

Математическая модель

Как не трудно догадаться, математическая модель отражает какие-либо черты объекта или явления при помощи специальных математических символов. Математика и нужна для того, чтобы моделировать закономерности окружающего мира на своем специфическом языке.

Метод математического моделирования зародился достаточно давно, тысячи лет назад, вместе с появлением данной науки. Однако толчок для развития данного способа моделирования дало появление ЭВМ (электронно-вычислительных машин).

Теперь перейдем к классификации. Ее так же можно провести по некоторым признакам. Они представлены в таблице ниже.

Мы предлагаем остановиться и подробнее рассмотреть последнюю классификацию, так как она отражает общие закономерности моделирования и цели создаваемых моделей.

Дескриптивные модели

В данной главе мы предлагаем остановиться подробнее на дескриптивных математических моделях. Для того чтобы было все предельно понятно, будет приведен пример.

Начнем с того, что этот вид можно назвать описательным. Это связано с тем, что мы просто делаем расчеты и прогнозы, но никак не можем повлиять на исход события.

Ярким примером описательной математической модели является вычисление траектории полета, скорости, расстояния от Земли кометы, которая вторглась в просторы нашей Солнечной системы. Эта модель является описательной, так как все полученные результаты могут только предупредить нас о какой-либо опасности. Повлиять на исход события, увы, мы не можем. Однако, основываясь на полученных расчетах, можно предпринять какие-либо меры для сохранения жизни на Земле.

Оптимизационные модели

Сейчас мы немного поговорим об экономико-математических моделях, примерами которых могут служить разные сложившиеся ситуации. В данном случае речь идет о моделях, которые помогают найти верный ответ в определенных условиях. Они обязательно имеют некие параметры. Чтобы стало предельно понятно, рассмотрим пример из аграрной части.

У нас есть зернохранилище, но зерно очень быстро портится. В этом случае нам необходимо правильно подобрать температурный режим и оптимизировать процесс хранения.

Таким образом, мы можем дать определение понятию «оптимизационная модель». В математическом смысле это система уравнений (как линейных, так и нет), решение которой помогает найти оптимальное решение в конкретной экономической ситуации. Пример математической модели (оптимизационной) мы рассмотрели, но хочется еще добавить: данный вид относится к классу экстремальных задач, они помогают описать функционирование экономической системы.

Отметим еще один нюанс: модели могут носить разный характер (см. таблицу ниже).

Многокритериальные модели

Сейчас предлагаем вам поговорить немного о математической модели многокритериальной оптимизации. До этого мы привели пример математической модели оптимизации процесса по какому-либо одному критерию, но что делать, если их много?

Ярким примером многокритериальной задачи служит организация правильного, полезного и одновременно экономного питания больших групп людей. С такими задачами часто встречаются в армии, школьных столовых, летних лагерях, больницах и так далее.

Какие критерии нам даны в данной задаче?

  1. Питание должно быть полезным.
  2. Расходы на пищу должны быть минимальными.

Как видите, эти цели совсем не совпадают. Значит, при решении задачи необходимо искать оптимальное решение, баланс между двумя критериями.

Игровые модели

Говоря об игровых моделях, необходимо понимать понятие «теория игр». Если говорить просто, то данные модели отражают математические модели настоящих конфликтов. Только стоит понимать, что, в отличие от реального конфликта, игровая математическая модель имеет свои определенные правила.

Сейчас будет приведен минимум информации из теории игр, которая поможет вам понять, что такое игровая модель. И так, в модели обязательно присутствуют стороны (две или более), которых принято называть игроками.

Все модели имеют некие характеристики.

Игровая модель может быть парной или множественной. Если у нас есть два субъекта, то конфликт парный, если больше - множественный. Также можно выделить антагонистическую игру, ее еще называют игрой с нулевой суммой. Это модель, в которой выигрыш одного из участников равняется проигрышу другого.

Имитационные модели

В данном разделе мы обратим внимание на имитационные математические модели. Примерами задач могут служить:

  • модель динамики численности микроорганизмов;
  • модель движения молекул, и так далее.

В данном случае мы говорим о моделях, которые максимально приближены к реальным процессам. По большому счету, они имитируют какое-либо проявление в природе. В первом случае, например, мы можем моделировать динамику численности муравьев в одной колонии. При этом можно наблюдать за судьбой каждой отдельной особи. В данном случае математическое описание используют редко, чаще присутствуют письменные условия:

  • через пять дней женская особь откладывает яйца;
  • через двадцать дней муравей погибает, и так далее.

Таким образом, используются для описания большой системы. Математическое заключение - это обработка полученных статистических данных.

Требования

Очень важно знать, что к данному виду модели предъявляют некоторые требования, среди которых - приведенные в таблице ниже.

Универсальность

Это свойство позволяет использовать одну и ту же модель при описании однотипных групп объектов. Важно отметить, что универсальные математические модели совершенно не зависят от физической природы исследуемого объекта

Адекватность

Здесь важно понимать, что данное свойство позволяет максимально правильно воспроизводить реальные процессы. В задачах эксплуатации очень важно данное свойство математического моделирования. Примером модели может служить процесс оптимизации использования газовой системы. В данном случае сопоставляются расчетные и фактические показатели, в результате проверяется правильность составленной модели

Точность

Данное требование подразумевает совпадение значений, которые мы получаем при расчете математической модели и входных параметров нашего реального объекта

Экономичность

Требование экономичности, предъявляемое к любой математической модели, характеризуется затратами на реализацию. Если работа с моделью осуществляется ручным способом, то необходимо рассчитать, сколько времени уйдет на решение одной задачи при помощи данной математической модели. Если речь идет об автоматизированном проектировании, то рассчитываются показатели затрат времени и памяти компьютера

Этапы моделирования

Всего в математическом моделировании принято выделять четыре этапа.

  1. Формулировка законов, связывающих части модели.
  2. Исследование математических задач.
  3. Выяснение совпадений практических и теоретических результатов.
  4. Анализ и модернизация модели.

Экономико-математическая модель

В этом разделе кратко осветим вопрос Примерами задач могут служить:

  • формирование производственной программы выпуска мясной продукции, обеспечивающей максимальную прибыль производства;
  • максимизация прибыли организации путем расчета оптимального количества выпуска столов и стульев на мебельной фабрике, и так далее.

Экономико-математическая модель отображает экономическую абстракцию, которая выражена при помощи математических терминов и знаков.

Компьютерная математическая модель

Примерами компьютерной математической модели являются:

  • задачи гидравлики при помощи блок-схем, диаграмм, таблиц, и так далее;
  • задачи на механику твердого тела, и так далее.

Компьютерная модель - это образ объекта или системы, представленный в виде:

  • таблицы;
  • блок-схемы;
  • диаграммы;
  • графика, и так далее.

При этом данная модель отражает структуру и взаимосвязи системы.

Построение экономико-математической модели

Мы уже ранее сказали о том, что такое экономико-математическая модель. Пример решения задачи будет рассмотрен прямо сейчас. Нам необходимо произвести анализ производственной программы для выявления резерва повышения прибыли при сдвиге в ассортименте.

Полностью рассматривать задачу мы не будем, а только построим экономико-математическую модель. Критерий нашей задачи - максимизация прибыли. Тогда функция имеет вид: Л=р1*х1+р2*х2…, стремящееся к максимуму. В данной модели р - это прибыль за единицу, х - это количество производимых единиц. Далее, основываясь на построенной модели, необходимо произвести расчеты и подвести итог.

Пример построения простой математической модели

Задача. Рыбак вернулся со следующим уловом:

  • 8 рыб - обитатели северных морей;
  • 20% улова - обитатели южных морей;
  • из местной реки не обнаружилось ни одной рыбы.

Сколько рыб он купил в магазине?

Итак, пример построения математической модели данной задачи выглядит следующим образом. Обозначаем общее количество рыб за х. Следуя условию, 0,2х - это количество рыб, обитающих в южных широтах. Теперь объединяем всю имеющуюся информацию и получаем математическую модель задачи: х=0,2х+8. Решаем уравнение и получаем ответ на главный вопрос: 10 рыб он купил в магазине.

Моделированияе Моделирование – это изучение реальной системы (оригинала), путем замещения его новым объектом его моделью, имеющего с ней определенное объектное соответствие и позволяющее прогнозировать ее функциональные особенности, т.е. при моделировании экспериментируют не самим объектом, а объектом, который называют заменителем.

Процесс моделирования включает несколько этапов:

1. Постановка задачи и определение свойств реального объекта, подлежащего исследованию.

2. Констатация затруднительности или невозможности исследования реального объекта.

3. Выбор модели, хорошо функционирующие основные свойства объекта с одной стороны и легко поддающиеся исследованию с другой. Модель должна отражать основные свойства объекта и не должна быть грамосткой.

4. Исследование модели в соответствии с поставленной целью.

5. Проверка адекватности объекта и модели. Если нет соответствия, то необходимо повторить первые четыре пункта.

Существует классический и системный подход к решению задач моделирования. Суть метода заключается в следующем: Реальный объект, подлежащий к исследованию, разбивается на отдельные компоненты Д и выбираются определенные цели Ц формирования отдельных компонентов модели К . Затем на основе исходных данных создаются компоненты модели, совокупн6ость которых, с учетом их соотношений, объединяются в модель. Данный метод является индуктивным, т.е. построение модели происходит от частного к общему.

Классический метод используется для моделирования относительно простых систем, например, САУ.Системный подход Суть метода заключается в том, чтобы на основе исходных данных Д , которые известны из анализа внешней среды, с учетом ограничений, которые накладываются на систему и в соответствии с поставленной целью Ц , формируются требования Т и модели объекта. На базе этих требований строится подсистема П и элементы подсистем Э и с помощью критерия выбора КВ осуществляется выбор наилучшей модели, т.е. построение модели происходит от общего к частному.

Системный подход используется для моделирования сложных систем.

Классификация видов моделирования 1. По способу построения модели.а) Теоретические (аналитические) – строятся по данным о внутренней структуре на основе соотношений, вытекающих из физических данных. б) Формальные – по зависимости между выходом и входом в систему. Строится на основе принципа черного ящика.в) Комбинированные.2. По изменению переменных во времени.а) Статические.б) Динамические.Статическая модель описывает состояние объекта и не содержит производных х и у (входных и выходных) сигналов по времени.Математическая модель б) описывает статику объема с распределенными по длине координатами.Динамическая модель описывает переходные процессы во времени и содержит производные у i dt .Динамическая модель, в зависимости от способа получения, представляется в виде дифференциального уравнения переходной импульсной или частотной характеристики в виде передаточной функции.Динамика объектов с сосредоточенными параметрами описывается обыкновенными дифференциальными уравнениями, а объекты с распределенными параметрами описываются дифференциальными уравнениями в частотных производных.3. По зависимости переменных модулей от пространственных координат.а) С распределенными параметрами.б) С сосредоточенными параметрами.4. По принципу построения.а) Стохастические.б) Детерминированные.Если х и у (вход и выход) постоянные или известные величины (детерминированные), то модель называется стохастическая.Если х и у случайные (вероятные) величины, то модель называется стохастической.

Стохастические модели содержат вероятные элементы и представляют собой систему зависимости, полученную в результате статического исследования действующего объекта.

Детерминированная – это система функциональных зависимостей, построенная с использованием теоретического подхода.

Детерминированные модели имеют ряд преимуществ. Их можно разрабатывать даже при отсутствии действующего объекта, как это часто бывает при проектировании. Они качественно, более правильно характеризуют процессы, протекающие в объекте даже при наличии недостаточно точных в количественном отношении параметров модели.

Если информация об объекте моделирования не обладает достаточно высокой полнотой или из-за его значительной сложности, невозможно описать в виде модели все входные воздействия, а влияние ненаблюдаемых переменных на выходные координаты существенны, то применяют статическую модель.

5. По зависимости параметров модели от переменных.

а) Зависимые (нелинейные).

б) Независимые (линейные).

Если параметры (коэффициенты) модели зависят от переменных или последнее мультипликативные, то модель является нелинейной.

Модель считают линейной при непрерывном отклике на входное воздействие и при аддетивности от параметров модели.

Адетивность величин - это свойство, заключающее в том, что значение величины целого объекта равно сумме значений соответствующих частот целого при любом разбиении объекта на части.

Мультипликативность величин – это свойство, заключающееся в том, что значение величины целого объекта равно произведению значения величины соответствующих частей целого при любом разбиении объекта на части.

6. По приспособляемости модели.

а) Адаптивные.

б) Неадаптивные.

Адаптивная – это модель, структура и параметры которой изменяются так, чтобы некоторая мера погрешности между выходными переменными модели и объекта была минимальна.

Они делятся на поисковые и беспоисковые.

В поисковых моделях автоматический оптимизатор варьирует параметры модели так, чтобы получилось минимальная мера ошибки между выходными моделями объекта.

Лекция № 2

Математические схемы моделирования

Основные подходы к построению математической модели системы

Исходная информация при построении математической модели, процесса функционирования систем служат данные о назначении и условии работы исследуемой системы. Эта информация определяет основную цель моделирования систем S и позволяет сформулировать требования и разрабатываемой математической модели М .

Математическая схема – это звено, при переходе от содержательного к формальному описанию процесса функционирования процесса, с учетом воздействия внешней среды, т.е. имеет место цепочка: описательная модель → математическая схема → математическая модель.

Каждая система S характеризуется набором свойств, отражающих поведение системы и условия ее функционирования во взаимодействии с внешней средой ε .

Полнота модели регулируется в основном выбором границы системой S и внешней средой Е .


Задачу упрощения модели помогает выделить основные свойства системы, отбросив второстепенные.

Введем следующее обозначение:

1) Совокупность входных воздействий на систему

.

2) Совокупность воздействий внешней среды

.

3) Совокупность внутренних или собственных параметров системы

.

4) Совокупность выходных характеристик системы